2025/10/01
オオバギボウシの花で採餌するクロマルハナバチ♀の羽ばたき【FHD動画&ハイスピード動画】
2025/09/15
池で単独連続打水産卵するオオシオカラトンボ♀と警護飛翔する♂【FHD動画&ハイスピード動画】
(オオシオカラトンボの)♀は単独で浅い水面を打水し、腹端ですくい上げた水と卵とを前方に飛ばす。♂は付近を飛んで警護することが多い。(ネイチャーガイド『日本のトンボ』p483より引用)
・交尾のあとすぐに、めすは、水のなかに産卵します。このとき、おすはめすのまわりととんで見はります。
・水草のはえた池や沼では、めすが卵を水てきといっしょに水草にむかって、腹のさきでとばして、産卵します。 (p30〜31より引用)1985年に発行された40年前の古本ですが、交尾の連続写真(当時は高速連写できないので苦労して撮り貯めたカラー写真を再構成した組写真)なども掲載されていて、充実した内容です。
打水産卵時の卵の挙動オオシオカラトンボの打水産卵(飛水産卵)では、腹端を水面に打ち付けると同時に卵と水滴を一緒に前方へ飛ばす行動がみられます。このとき腹端で水面をすくい上げた小さな水滴の中に卵が含まれていて、その水滴ごと水面の前方(浅瀬や水草の周辺)に飛ばされる、というのが標準的な解釈です。連続して打水するので、水面には多数の小さな水滴が弧を描きながら飛び、卵もこれに含まれて飛ばされます。詳細と補足水滴は水面に再び落ちる際、その中に入った卵も一緒に着水し、そのまま水中に沈みます。写真や動画の高精度な観察でも、「水滴の中に卵が混じって飛んでいる」様子が確認されており、水滴の色が微妙に濁る・色づく場合は卵塊が含まれているためとされています。水滴の一部が透明、他がうっすら褐色の場合、褐色の水滴の方に卵や卵塊が多く含まれる状況が観察されています。まとめオオシオカラトンボ♀の打水産卵では、卵は打水によってできた小さな水滴に包まれて飛び、水滴ごと前方へ飛ばされた後、水面に落ちてそのまま水中に沈みます。打水と同時に水中に直接沈むのではなく、「水滴の中に入って飛ぶ→水面に再落下して水中へ沈む」が基本の流れです。この産卵様式は、卵をなるべく広範囲にばらまき、外敵からの(食卵)リスクを減らすためのものと考えられています。
オオシオカラトンボ♀が池の浅瀬から岸に向かって水滴を飛ばす産卵行動は、たしかにご指摘のように「池の干上がりが進む時期、水面から離れた場所では卵が孵化や発生に適さなくなる恐れ」があります。実際、トンボの打水産卵は卵を水滴と一緒に前方へ飛ばし、より広範囲かつ適した場所に分散する意味があると考えられていますが、どの程度「着水するか」は水位や池の地形、個体の打水角度など自然条件によって変動します。トンボの産卵行動の研究では、普段は卵を確実に水面に落下させることが繁殖戦略ですが、池が干上がりつつあるなどの極端な状況では、必ずしも全ての卵が生き残るわけではなく、生存率の低下は避けられません。メスは本能的には「水面やその近く」で産卵しますが、水位が低くなっている場合、結果的に一部の卵が水際から外れるリスクも発生します(環境把握能力には限界があります)。しかし、トンボは基本的に当日の池の状態(少なくとも「目で見て水がある範囲」)を選ぶ能力が備わっていると考えられており、一定の確率で着水しない場所にも卵が飛ぶことも想定内です。干上がりの進行など短期間の変動には柔軟に対応しきれないため、「池の縁」に産み落とされた卵は水位低下で生存率が下がる可能性が高いですが、これは自然環境下でトンボが常に抱えるリスクでもあります。まとめると、「池の水位が極端に下がると卵の生存率が低下しうる」ことはその通りですが、オオシオカラトンボの産卵行動はあくまで通常状態の水辺環境を前提に進化しており、池が干上がる非常時に完全対応するものではありません。生存率の確保には、産卵タイミング・場所選択・環境変動すべてが影響します。産卵時の水位が高ければほとんどが水面に着地し高い生存率となりますが、干上がりが進めば一部は陸地に落下し孵化できず死亡します。トンボは水面に産みつけようとしますが、環境条件が変動する以上「最大多数を水辺に着地させる」戦略しかとれません。したがって、今回ご覧になったような状況は、生態的にはごく普通に見られる現象であり、トンボの本能的な産卵行動が必ずしもその年の最適条件に対応できないという自然界の一断面ともいえます。
卵の乾燥耐性トンボ類の卵は一般に産卵直後は乾燥に弱いですが、発生が進み眼点(発生初期の目のような構造)が現れるまではやや耐乾性が低い一方、発生が進むと乾燥耐性がかなり強くなります。水田や池が一時的に干上がっても、多くの種で卵は土や泥の中でかなりの乾燥や低温に耐えて春になり、水が張られると孵化することが可能です。オオシオカラトンボの卵もこの耐乾性を持ち、通常の内陸のため池などで冬期に水が抜かれて乾燥状態が続いても、生き残れるケースがあり、これは稲作地帯のシオカラトンボなどとほぼ同等の能力とみなされます。ヤゴ(幼虫)の乾燥耐性幼虫(ヤゴ)は卵ほどの乾燥耐性はありませんが、冬季の低温下では、ある程度の乾燥や池干しにも耐えられることが知られています。泥の中に深く潜ったり、落ち葉の下に隠れるなどして、一時的な湿泥状態なら生存できる場合もあります。ただし高温期(春~夏~初秋)に完全な乾燥に晒されると生き残れないことがほとんどで、特に羽化直前の終齢幼虫などは乾燥に極めて弱いです。冬季など休眠に近い低代謝の状態だとやや耐えやすいですが、卵期ほどの耐性はありません。まとめ卵期の乾燥耐性は高く、池や水田の“冬期干上げ”程度には十分に耐える能力がある。ヤゴは卵ほど乾燥に強くないが、泥の中など湿り気がごくわずかに残る状況では冬季~早春に一時的な乾燥に耐えられる場合もある。一方、完全な乾燥(土がカチカチに乾く状態)が長期間続くと、幼虫はほとんど死滅してしまう。多くの日本のトンボ同様、オオシオカラトンボも水辺の環境変動にある程度耐える進化をしていますが、耐性の「強さ」は卵>幼虫の順です。
オオシオカラトンボの単独産卵と♂の警護飛翔の進化・行動の実態については、実際の現場行動と繁殖戦略の両面からもっと複雑な説明が必要です。連結解除の主導は♂トンボ類の多くでは交尾後、♂が自発的に連結を解除して♀を離す行動が観察されています。これは交尾後に♀が産卵に移る時点で、連結保持による直接監督より、効率的な交尾回数増加や他の♀探索への戦略を取るためです。つまり、単独打水産卵への切り替えは、進化的には♂側の交尾戦略(浮気的=複数の♀との交尾へ)や他の♀に対する即応性の高さの副産物です。警護飛翔中の♂の行動産卵警護中でも、池に新たな♀が現れると、警護していた♂は即座に警護中の♀を見捨て、新到着♀にアタックし連結しようとする行動が頻繁に報告されています。トンボ♂は「警護」と「新たな交尾相手獲得」を状況ごとにスイッチしやすく、どちらかといえば「新たな♀優先」になる傾向が強いです。進化的意義単独産卵を可能にしたのは**♀の進化的自由ではなく、♂の浮気行動(頻繁な交尾機会探索)や多数交尾戦略に由来**します。産卵警護は「自分の精子で産ませたい」気持ちの表れですが、より生殖成功率を高めるためには、他の♀の出現時に即座に乗り換える「浮気性」が同じくらい重要です。観察・実験例産卵池では、同時に複数ペアが産卵行動をとり、♂が急に警護♀から新たな♀に乗り換える現象が容易に再現・観察できます。男女双方の利害一致ではなく、主に♂の多回交尾・浮気性・交尾機会争取戦略によって形づくられていると考えられます。要するに、オオシオカラトンボの警護産卵と連結解除の主因は「♂の浮気性や交尾回数の最大化欲求」と見る方が、生態的現象の実態により近いです。ご指摘の通り、産卵警護中でも♂は新規到着の♀に即反応して乗り換えるため、「本当に守っている」のは縄張りと交尾機会だけであり、♀自身や受精卵に対する献身的防衛ではありません。
比較行動学と分子系統分類学を組み合わせることで、トンボの産卵行動の進化順序を「かなりの程度」推測することは可能ですが、産卵行動の多様性は必ずしも系統樹のパターンにきれいに一致せず、**収斂進化(独立進化)も非常に多い**ことが明らかになっています。[1][2][3]### 行動形態と系統の対応- トンボの産卵行動には「静止接触産卵」「静止非接触産卵」「飛翔接触産卵」「飛翔非接触産卵」など複数の基本タイプがあり、各グループごとに特徴的な行動パターンを示します。[1]- たとえば、イトトンボ科やアオイトトンボ科は連結潜水産卵や組織内産卵が典型で、ヤンマ類やアカトンボ類は空中からの打空産卵・連結打水産卵、トンボ科は♀単独の打水産卵が多いなど、類縁ごとの偏りがあります。[2][3]### 分子系統分類学との比較- 最新の分子系統樹による分析では、こうした産卵行動パターンが「一度だけ進化し、系統的に保存されている」場合と、「複数回、異なる系統で独立進化した(収斂進化)」場合の両方が認められています。[1]- 一部の行動(例:組織内産卵や連結打水産卵)は比較的原始的な形質とされ、複数の系統にわたって保存されている傾向がありますが、**打水産卵や打空産卵など「目立った派生行動」は、異なるグループ間で独立に進化したと推測されるものが多い**です。[3][1]### 収斂進化の具体例- たとえば「打空産卵」はアカトンボ類だけでなく他の科にも現れ、「単独打水産卵」も様々な系統で発達しており、同じ行動が系統的に遠いグループでも発現します。[2][1]- これは生息環境や繁殖戦略、生存率向上など外部要因による適応が大きく関わっているためと考えられています。### 結論- 比較行動学と分子系統分類学を合わせれば「祖先形質」「系統保存された行動」「収斂的な適応」の判別が可能ですが、**産卵行動の多くは複数回・多系統で独立進化した例が多く、単純な祖先―派生の直線的な進化とは限りません**。[3][2][1]- したがって、「産卵行動の進化順序は系統ごとに異なる分岐と収斂の複合」と解釈するのが現在の理解です。
2025/09/13
ナンテンの花粉を集めて回るクマバチ♀の羽ばたき【FHD動画&ハイスピード動画】
2025/09/09
ハラビロトンボ未成熟♂の飛び立ち【FHD動画&ハイスピード動画】
2025/09/07
ムラサキツメクサの花蜜を吸い飛び回る春型のキアゲハ♀【FHD動画&ハイスピード動画】
2025/09/03
向かい合ってペアで並ぶフタツメオオシロヒメシャク(蛾)の謎【FHD動画&ハイスピード動画】
フタツメオオシロヒメシャクは本来南方系の蛾で、暖地性とされており、従来は九州以南でよく見られ、本州の温暖な地域にも分布しています。しかし、最近の温暖化の影響で、九州以北の地域にも生息域を拡げているという記録があります。 山形県などの北国でも、近年の気候変動による温暖化で成虫が見られる可能性が高まっていると言えます。6月中旬の山形県の里山での観察も、温暖化の影響が関わっている可能性があるため、暖地性でありながら見られることは十分にありえる状況です。 まとめると、山形県には以前は分布していなかった種かもしれませんが、近年の温暖化に伴い北上し、見られるようになったと考えるのが妥当です.フタツメオオシロヒメシャクの食餌植物はモクセイ科らしいのですが、私のフィールドで自生するモクセイ科の樹木はマルバアオダモぐらいしか思いつきません。
2025/08/31
電線で交尾するスズメ♀♂【野鳥:ハイスピード動画】
スズメは1年に 2〜3回、多い場合は4回ほど繁殖 することがあります。北日本の郊外では:第1回繁殖:4月〜5月第2回繁殖:6月〜7月第3回繁殖:7月下旬〜8月上旬気温や餌の量が減り、換羽期に入ると繁殖活動は終了します。北日本では 8月中旬以降はほぼ交尾は観察されない と考えてよいです。
今回のように下から見上げる形で観察・撮影していた場合、♀にとっては「近くに潜在的な脅威あり」と感じ、自然に交尾を拒否する行動が強まった可能性が高いです。つまり、交尾未遂は**♀の心理的・環境的要因による一時的な拒否**の結果である可能性があります。これは♀の繁殖戦略や精子選択の意思とは直接関係せず、安全確保のための行動として理解できます。この場合、オスの欲求不満や羽毛逆立ちも、♀の拒否に起因して生じた「未遂反応」と考えるのが自然です。
2025/08/26
シロツメクサの花で採餌するオオマルハナバチ創設女王【FHD動画&ハイスピード動画】
2025/08/24
山道から飛び立つミヤマセセリ♂【FHD動画&ハイスピード動画】
2025/08/19
休耕地で採食するキジ♂が合間に母衣打ち♪【野鳥:FHD動画&ハイスピード動画】
2025/08/18
セラスチウム(シロミミナグサ)の花蜜を吸うベニシジミ夏型【FHD動画&ハイスピード動画】
2025/08/08
ノダイコンの花蜜を吸うナミアゲハ♂の羽ばたき【FHD動画&ハイスピード動画】
2025/07/29
砂利道で休み、準備運動後に飛び立つクジャクチョウ【FHD動画&ハイスピード動画】
2025/07/27
早春の雪国で活躍する家庭用の小型除雪機【FHD動画&ハイスピード動画】
2025/07/21
ノアザミの花から花へ飛び回り吸蜜するミヤマカラスアゲハ春型♀【FHD動画&ハイスピード動画】
アゲハチョウ科(Papilionidae)では、前翅と後翅は基本的に連結していません。 鱗翅目(チョウ目)の中でも、アゲハチョウ科を含む多くの「チョウ類」では、ガ類に見られる「フレネュラムとレティナクル(frenulum and retinaculum)」による前翅と後翅の連結機構が退化または消失しています。そのため、アゲハチョウ科の蝶は前翅と後翅が独立して動きます。撮影後にノアザミの総苞片が粘ることを確認しました。
2025/07/11
ナワシロイチゴの花から花へ飛び回り採餌するクマバチ♀【FHD動画&ハイスピード動画】
2025/06/17
ヤマキヒゲナガ♂の群飛とレック形成【蛾:FHD動画&ハイスピード動画】
小型。♂の触角は前翅長の3倍以上と非常に長い。♀の触角は♂の半分以下と短く、基半部に黒い毛が生え太く見える種が多い。♂は昼間長い触角をたなびかせて競い合うように群飛する。 (p15より引用)『日本動物大百科9昆虫II』によれば、
ヒゲナガガ科には群飛する種と群飛しない種がいる。(中略)クロハネシロヒゲナガは、日中、草地を低くとびかうのが見られ、多数の♂が同じ場所で白い触角を目立たせて飛翔することもあるが、これらの♂は互いにまったく無関心で干渉がないように見える。 群飛をするホソオビヒゲナガでは、♂がからみあって上下するような飛翔をする。樹上のかなり高い位置で群飛することもあり、カ類の群飛と見まちがえることもある。(p71より引用)
ヒゲナガガ類の♂では極端に長くなっていて、前翅長の2〜3倍の長さがある。これは群飛のときバランスをとるのに役立つのかもしれない。(p25より引用)ヒゲナガガ科の♂は多数が集まって求愛のためのレックを形成し、群飛で♀を誘引して飛びながら交尾するのだそうです。
資源とは特に関係の無い場所に集まった雄が、そこで小さな縄張りを作り、求愛のディスプレイを行う。 このような行動をする雄たちをレック (lek) という。レックが求愛のディスプレイで自分をアピールし、雌を呼び寄せて交尾をするというのがレック型一夫多妻である。ヤマキヒゲナガ幼虫の食草が何なのか、解明されていないそうです。
ヤマキヒゲナガ♂の群飛行動と配偶システムに関する考察
Ⅰ. 観察概要
日時・場所:2024年5月下旬・山形県の里山(草木に覆われた山腹の急斜面)
気象条件:曇天・無風状態
行動特徴:
少なくとも4頭の♂が同一空間で緩やかな群飛
飛翔個体に加え、シダ植物と広葉樹幼木(推定:ニワトコ・オシダ?)に静止する♂が混在
オス同士の闘争行動は確認されず
メスおよび交尾行動は未観察
Ⅱ. 行動生態学的解釈
1. 群飛の機能仮説
レック型配偶システム:
オスが特定の微気象条件(風速・日照)下で集団飛翔し、メスの訪問を待機1
ヒロオビヒゲナガ(N. raddei)の日没前スウォーム行動との類似性
待機戦略の多様性:
飛翔個体:視覚的アピールによるメス誘引
静止個体:エネルギー節約型の待機戦略
2. 触角の形態と機能
オス触角の特徴:
体長の3倍に達する糸状触角(全長約15mm)
表面積は♀触角(毛密生)の1/5以下
機能仮説:
フェロモン検知:未検証(従来説の再考必要)
飛翔安定装置:長い触角が「生物学的スタビライザー」として機能6
視覚シグナル:光反射による個体間通信
3. フェロモンシステムの特殊性
従来説との矛盾:
ヒゲナガガ科では♀発信型フェロモンが主流とされる
本種では♂がフェロモンを放出している可能性
二重機能仮説:
オスフェロモンが同性を集合させ(集合フェロモン)、同時に♀を誘引
Ⅲ. 未解決問題と研究課題
1. 行動メカニズム
群飛形成の誘引要因(化学的/視覚的/地形的)
静止個体と飛翔個体の役割分業
メスの出現パターンと時間帯依存性
2. 生理学的課題
触角切除実験による飛翔安定性の定量評価
分泌物質のGC-MS分析によるフェロモン同定
触角感覚器の走査型電子顕微鏡観察
3. 進化的意義
小型化(体長5-7mm)と触角長大化の相関
レイノルズ数(慣性力と粘性力の比)低下環境(体長比Re≈100)での飛翔制御適応
種特異的フェロモンシステムの分子基盤
Ⅳ. 今後の観察指針
時間帯別行動記録:日出~日没まで1時間毎の個体数変動
環境要因記録:
気温・湿度・風速の連続測定
植物フェノロジー(開花・新芽展開)との関連
標識再捕法:
蛍光粉末による個体追跡
行動圏と移動距離の推定
総括
本観察はヒゲナガガ科の配偶システム解明において以下を示唆:
従来の「♀発信型フェロモン」モデルに当てはまらない可能性
触角の多機能性(感覚・飛翔制御・視覚信号)の共存
レック行動の多様性(闘争なき集団形成)
- https://pmc.ncbi.nlm.nih.gov/articles/PMC9939265/
- https://www.pref.aomori.lg.jp/soshiki/kenmin/ao-kendo/files/H24dmns-1.pdf
- https://www.city.hiroshima.lg.jp/_res/projects/default_project/_page_/001/011/855/45554.pdf
- https://hs-gakko.org/wp-content/uploads/2024/03/ikimono.pdf
- http://www.esj.ne.jp/meeting/51/pdf/book/jes51p2.pdf
- interests.insect_physiology
- http://www.jpmoth.org/Adelidae/Adelinae/Nemophora_japonica.html
- https://company.jr-central.co.jp/chuoshinkansen/assessment/document1408/kanagawa/_pdf/eis2_kanagawah14.pdf
- https://www.city.minokamo.lg.jp/uploaded/attachment/2441.pdf
- https://www.city.nobeoka.miyazaki.jp/uploaded/attachment/8659.pdf
- https://www.ars.usda.gov/ARSUserFiles/20200500/Pubs%202020/HullFonagy%202019.pdf
2025/06/11
ヤマキヒゲナガ♂(蛾)の身繕いと飛び立ち【FHD動画&ハイスピード動画】
ヒゲナガガ類の♂では極端に長くなっていて、前翅長の2〜3倍の長さがある。これは群飛のときバランスをとるのに役立つのかもしれない。(p25より引用)とのことですが、私はヒゲナガガ類の群飛をまだ一度も見たことがありません。